פריים נומערן זענען ווי די אטאמען אין עולם המספרים, יעדער נומער איז אדער א פריים אדער באשטייט ער פון פריים נומערן. למשל 3 און 5 זענען פריימס, 15 באשטייט פון 3 און 5 (15 = 5 * 3). דאס איז די
פונדאמענטאלע טעארם פון אריטמעטיק. צוברעכן א נומער אויף זיינע באשטאנדטיילן ווערט אנגערופן
integer factorization.
מיר ווייסן אז ס'זענען דא אינפיניט פריימס, די ליסטע ענדיגט זיך נישט קיינמאל. איינס פון די הוכחות איז כמעט טריוויאל: נעמט א ליסטע פון פריים נומערן (לאמיר זאגן אלע פריימס אונטער צען: 2, 3, 5, 7), רעכנט זיי צוזאמען (210 = 7 * 5 * 3 * 2), און לייגט צו איינס (האלטן מיר ביי 211). מיר וועלן זיך גאנץ שנעל איבערצייגן אז דער נומער צוטיילט זיך נישט אין די פריימס וואס מיר האבן אויף אונזער ליסטע, אבער מיר ווייסן דאך אז יעדע נומער צוטיילט זיך אין פריימס אדער איז אליינס א פריים! מוז זיין אז אונזער ליסטע פארמאגט נישט אלע פריימס וואס זענען פארהאן (אין אונזער פאל איז טאקע 211 אליינס א פריים). וויבאלד מ'קען אזוי אנגיין לעולם ועד, מוז זיין אז ס'זענען דא אין-סוף פריימס.
אבער וויבאלד מיר רעדן דאך אין דעם אשכול פון כמה מינים אינפיניטיס, וועלכע סארט אינפיניטי איז דאס? ווי
געשריבן אויבן, אלף-זערא. אין אנדערע ווערטער: עס זענען דא פונקט אזויפיל פריים נומערן ווי (natural) נומערן בכלל! האט איר נאך א פאראדאקס בעניני אינפיניטי.
יאיר האט געשריבן:און אזוי אויך געדענק איך א שאלה איבער דעם כלל אז מען קען צוטיילן יעדן פאזיטיוון נומער אין צוויי פריים נומערן, צו ס'איז דא א הוכחה דערצו.
אין פונקטליכערע ווערטער: יעדע even נומער פון 4 און העכער קען אויסגעדריקט ווערן ווי דער סכום פון צוויי פריים נומערן, דאס איז
גאלדבאך'ס שפעקולאציע. לדוגמא, 100 = 97 + 3. אויף ווי ווייט מ'האט בודק געווען (
4000000000000000000) שטימט עס, אבער קיין proof האט מען נאכנישט. אויב איז דאס אמת, איז מוכרח פון דעם א
צווייטע כלל: יעדע odd נומער העכער 5 קען אויסגעדריקט ווערן ווי דער סכום פון דריי פריים נומערן. ממש לעצטענס איז
איינער אויפגעקומען מיט א proof, וואס כפי הנראה יש דברים בגו, הגם די מאטעמאטישע וועלט דארף עס נאך גרונטליכער דורכטון. אבער דער proof וועט לכאורה נישט ארבעטן אויף צוריק, מוכיח צו זיין אויך דער ערשטער כלל.
יאיר האט געשריבן:און פיינעלי, שטייט דארט עפעס וואס כ'האב נישט פארשטאנען, אז עס זענען פארהאן קאוד שפראכן וואס ארבעטן אויף א סיסטעם אז מ'קען דאס נישט אויפברעכן נאר אויב מ'ווייסט אלע פריים נומערן, און אזוי ווי מ'רעדט פון גאר הויכע ציפערן איז כמעט אוממעגליך דאס אויפצוברעכן. איך וועל בעטן כבוד הרב הגאון, חכם וסופר, מדען וידען, @שליח יקירנו זאל מער מרחיב זיין את הדיבור.
דאס האט שוין מיט
computational complexity theory. אהן אריינצוגיין אין פרטים און סיבות, זענען דא חשבונות (אלגאריטמס) וואס זענען שווער און קאמפליצירט און אנדערע וואס זענען פיל גרינגער און פשוטער. למשל חיבור (addition) איז געווענליך גרינגער ווי כפל (multiplication), וואס איז גרינגער ווי חילוק (division). אויף וויפיל מ'ווייסט יעצט, איז factorization (צוברעכן א נומער אויף זיינע פריים חלקים) זייער שווער, ובפרט ווען ס'קומט צו העכערע נומערן. א היינטיגע קאמפיוטער וואלט נישט געהאט קיין גאר-גרויסע פראבלעמען אויסצורעכענען אז
קוד: וועל אויס אלע
33478071698956898786044169848212690817704794983713768568912431388982883793878002287614711652531743087737814467999489
מאל
קוד: וועל אויס אלע
36746043666799590428244633799627952632279158164343087642676032283815739666511279233373417143396810270092798736308917
איז
קוד: וועל אויס אלע
1230186684530117755130494958384962720772853569595334792197322452151726400507263657518745202199786469389956474942774063845925192557326303453731548268507917026122142913461670429214311602221240479274737794080665351419597459856902143413
. ס'האט אבער גענומען צוויי יאר פאר הונדערטער קאמפיוטערס צוזאמען צו גיין דעם וועג פארקערט, געוואויר ווערן אז דער גרעסערער נומער באשטייט פון די צוויי קלענערע (
PDF).
יעצט לאמיר כאפן א בליק אויף
cryptography, נאר גענוג אויף צו פארשטיין דער געדאנק. ווען איינער שרייבט עפעס ביי זיך אויפן קאמפיוטער, און ער וויל קיינער אויסער ער זאל עס קיינמאל נישט קענען ליינען, קען ער עס ענקריפטן, "פארשפארן" מיט א געוויסע נומער. ס'זענען דא גאר אסאך אזעלכע פראגראמען, וואס מ'לייגט אריין א נומער, און דער פייל ווערט אומליינבאר ווילאנג מ'לייגט נישט נאכאמאל אריין דעם נומער. שטעלט אייך פאר ער לייגט אריין דעם אויבנדערמאנטן ריזיגן נומער, איז עס גאנץ פארזיכערט, קיינעם וועט קיינמאל נישט איינפאלן אזא נומער, אלעס פיין און וואויל. וואס איז אבער אויב וויל מען א encrypted connection, למשל כ'וויל פלוני זאל מיר שיקן עפעס אויף אימעיל, אבער די אלע קאמפאניס דורך וועמען דער אימעיל גייט אריבער זאלן עס נישט קענען ליינען? איינער זאל שרייבן פארן צווייטן וואס דער נומער איז איז אוודאי נישט קיין לעזונג, ווייל די קאמפאניס קענען דאך זעהן וואס מ'שרייבט. מיר זוכן א שלאס וואס סיי ווער קען צושפארן אבער נאר איינער קען עפענען.
דאס איז דער אויפטו פון
public-key cryptography, נוץ צוויי נומערן אנשטאט איינס, איינס א באהאלטענע און א צווייטע וואס יעדער מעג וויסן. די צוויי נומערן האבן א שייכות, אבער ס'איז אוממעגליך (אדער אויסטערליש שווער) צו דערגיין דעם באהאלטענעם נומער פונעם אפענעם. וואו פארשאפט מען אזעלכע נומערן? איינס פון די וועגן איז וואס מ'האט אויסגעשמועסט אויבן, ווער ס'ווייסט דעם ריזיגן נומער ווייסט נאכנישט די פריימס פון וואס ער באשטייט, אבער ס'איז גענוג גרינג צו מאכן דעם גרויסן נומער פון די פריימס אז כ'זאל עס קענען נוצן. צוריק צו אונזער מעשה, כ'בין מודיע פאר פלוני ער זאל ענקריפטן דעם פייל מיטן ריזיגן נומער, כ'מאך בכלל נישט קיין סוד דערפון, יעדער מעג עס וויסן. מ'קען אבער נישט דעקריפטן דעם פייל מיט דעם נומער, מ'מוז אריינלייגן איינע פון זיינע פריימס, וואס ליגט ביי מיר במחתרת. ווען איך לייג אריין דעם פריים אינעם פראגראם נעמט אים נישט לאנג אויסצורעכענען אז ס'שטימט מיטן ריזיגן נומער מיט וואס דער פייל איז פארזיגלט, ווייל מאכן א נומער פון פריימס איז דאך נישט קיין 'ביג דיעל' כנ"ל, וממילא עפנט ער מיר דעם פייל.
כ'האף אז ס'איז גענוג קלאר, כ'האב במכוון אויסגעלאזט אסאך פרטים.
---
הוגה האקט, האפנטליך זענען אייערע שאלות פארענטפערט. נאר איין הערה:
הוגה האט געשריבן:ווי שווער איז עס שוין צו ערפינדן א קאמפיוטער עס אויס צו רעכענען?
האט איר פארגעסן אז נומערן גייען ביז אין-סוף? ביז וויפיל זאל דער קאמפיוטער רעכענען?
בעניני number theory קען א קאמפיוטער מערסטענס צושטעלן א פירכא, נישט קיין ראי'. עכ"פ נישט אויף די פשוטע וועג פון רעכענען נומערן איינס נאכן צווייטן.